Impact of Angular Spread in Correlated MIMO Channels under Pilot Contamination

نویسندگان

  • Nadisanka Rupasinghe
  • Yavuz Yapici
  • Jorge Iscar
  • Ismail Güvenç
چکیده

Pilot contamination is known to be one of the main bottlenecks for massive multi-input multi-output (MIMO) networks. For moderately large antenna arrays (of importance to recent/emerging deployments) and correlated MIMO, pilot contamination may not be the dominant factor in certain scenarios. To the best of our knowledge, a rigorous characterization of the achievable rates and their explicit dependence on the angular spread (AS) is not available in the existing literature for moderately large antenna array regime. In this paper, considering an eigen-beamforming (EBF) precoding, we derive an exact analytical expression for achievable rates in multi-cell MIMO systems under pilot contamination, and characterize the relation between the AS, array size, and respective user rates. Our analytical and simulation results reveal that the achievable rates for both the EBF and the regularized zero-forcing (RZF) precoders follow a non-monotonic behavior for increasing AS when the antenna array size is moderate. We argue that knowledge of this non-monotonic behavior can be exploited to develop effective user scheduling techniques. Index Terms Eigen-beamforming (EBF), large scale multi-input multi-output (MIMO), pilot contamination, regularized zero-forcing (RZF), uniform linear array (ULA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pilot Contamination for Wideband Massive MMO: Number of cells Vs Multipath

This paper proposes a novel joint channel estimation and beamforming approach for multicell wideband massive multiple input multiple output (MIMO) systems. With the proposed channel estimation and beamforming approach, we determine the number of cells Nc that can utilize the same time and frequency resource while efficiently mitigating the effect of pilot contamination. The proposed approach ex...

متن کامل

Impact of the angular spread and antenna spacing on the capacity of correlated MIMO fading channels

It has been shown that the capacity of a multiple-input multiple-output system increases linearly with the number of antennas, provided that the environment is rich scattering. However, this increase in the capacity is substantially degraded if the multiple input multiple output channels are correlated. In this paper, the capacity of correlated multiple input multiple output fading channel is i...

متن کامل

Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems

A hybrid pilots assisted channel estimation algorithm for multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems under low signal-to-noise ratio (SNR) and arbitrary Doppler spread scenarios is proposed. Motivated by the dissatisfactory performance of the optimal pilots (OPs) designed under static channels over multiple OFDM symbols imposed by fast fading...

متن کامل

A Downlink Max-SINR Precoding for Massive MIMO System

To acquire the maximal array gain and mitigate the impact of pilot contamination, the downlink precoding algorithm on Max-SINR criterion was investigated and improved for Massive MIMO system. The objective function assured to maximize the utilization rate of the transmission power under the condition that SINR is not lower than the desired threshold. The Lagrangian function was deduced accordin...

متن کامل

Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading

Channel estimation is crucial for massive massive multiple-input multiple-output (MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. This paper presents a simple and practical channel estimator for multi-cell MU massive MIMO time division duplex (TDD) systems with pilot contamination in flat Rayleigh fading channels, i.e., the gains of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03539  شماره 

صفحات  -

تاریخ انتشار 2017